Algebra 1

Spring Semester 2015 marques@cims.nvu.edu

Quiz
$$\#2$$

Problems :

- 1. Let G be the matrix group $GL(n, \mathbb{C})$ of all $n \times n$ matrices A with complex entries and $det(A) \neq 0$. This *is* a group under matrix multiplication, and so is the subgroup $N = SL(n, \mathbb{C})$ of matrices with determinant +1.
 - (a) Prove that $SL(n, \mathbb{C})$ is a normal subgroup of $GL(n, \mathbb{C})$. What does this implies for the quotient $GL(n, \mathbb{C})/SL(n, \mathbb{C})$?
 - (b) Let

$$\begin{array}{rcl} \tilde{det}: & \mathrm{GL}(n,\mathbb{C})/\mathrm{SL}(n,\mathbb{C}) & \to & \mathbb{C}^{\times} \\ & & \mathrm{MSL}(n,\mathbb{C}) & \mapsto & det(M) \end{array}$$

Prove that det is a well defined isomorphism of groups. (Be careful you have to prove several properties here.)

Solution : We claim that N is normal in G, and that the quotient group G/N is isomorphic to the group $(\mathbb{C}^{\times}, \cdot)$ of nonzero complex numbers under multiplication.

Normality of N follows because the determinant has the properties

$$\det I = 1 \qquad \det(AB) = \det(A) \cdot \det(B) \qquad \det(A^{-1}) = \frac{1}{\det(A)}$$

If $A \in G$ and $B \in N$ we get $\det(ABA^{-1}) = \det(A)\det(B)\det(A)^{-1} = \det(B) = 1$, which shows that $ANA^{-1} \subseteq N$ for all $A \in G$. Thus N is normal. The determinant map $\phi(A) = \det A$ is a natural homomorphism $\phi : \operatorname{GL}(n, \mathbb{C}) \to \mathbb{C}^{\times}$. It is a group homomorphism because the determinant is multiplicative, and it is surjective because if $\lambda \neq 0$ in \mathbb{C} the diagonal matrix $D = \operatorname{diag}(\lambda^{1/n}, \ldots, \lambda^{1/n})$ has $\det D = \lambda$. (Here $\lambda^{1/n}$ is any complex nth root of λ ; for instance if λ has polar form $\lambda = re^{i\theta}$ we can take the principal nth root $\lambda^{1/n} = r^{1/n}e^{i\theta/n}$ where $r^{1/n}$ is the usual nth root of a non-negative real number.) The kernel of ϕ is precisely $N = \operatorname{SL}(n, \mathbb{C})$, by definition of $\operatorname{SL}(n, \mathbb{C})$. The conditions of the First Isomorphism Theorem are fulfilled. We conclude that $\operatorname{GL}(n, \mathbb{C})/\operatorname{SL}(n, \mathbb{C}) \cong (\mathbb{C}^{\times}, \cdot)$ as claimed.

2. (a) Give the center of S_3 . What you can deduce about S_3 ?

 $S_3 = \{Id, (1,2), (1,3), (2,3), (1,2,3), (1,3,2)\}$

(1,2)(1,2,3) = (1,3), and (1,2,3)(1,2) = (2,3), so neither (1,2) nor (1,2,3) is in the center. (2,3)(1,3,2) = (1,3), and (1,3,2)(2,3) = (1,2), so neither (2,3) nor (1,3,2) is in the center. (1,2)(1,3) = (1,2,3), and (1,3)(1,2) = (1,3,2), so (1,3) isn't in the center either. That leaves the identity permuation (1), which has to commute with everything, so the center is just $\{(1)\}$.

(b) Give the order of (1,3,2) in S_3 and the group generated by (1,3,2), to which well know group is it isomorphic to? $(1,2,3)^2 = (1,3,2)$, and $(1,2,3)^3 = Id$, so $< (1,2,3) >= \{Id, (1,2,3), (1,3,2)\}$. o(1,2,3) = 3 and $< (1,2,3) >\simeq \mathbb{Z}/3\mathbb{Z}$.

- 3. For each the following pair of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.
 - (a) U_5 and U_{10} . Yes. They are both cyclic of order 4.
 - (b) U_8 and $\mathbb{Z}/4\mathbb{Z}$. No. U_8 doesn?t has an element of order 4, but $\mathbb{Z}/4\mathbb{Z}$ does.
 - (c) U_{10} and $\mathbb{Z}/4\mathbb{Z}$. Yes. They are both cyclic of order 4.
 - (d) S_3 and $\mathbb{Z}/6\mathbb{Z}$. No. S_3 is not abelian, but $\mathbb{Z}/6\mathbb{Z}$ is.
- 4. Give the order of [2] in the group Z/6Z, give the subgroup of Z/6Z generated by [2]. To which well-know group is it isomorphic to? Be careful we are in additive notation here!! 2.[2] = [4], 3.[2] = [0]. then o([2]) = 3 and < [2] >= {[0], [2], [4]} ≃ Z/3Z.
- 5. Give the order of [5] in U_6 , give the subgroup of U_6 , generated by [5]. To which well-know group is it isomorphic to?

Be careful we are in multiplicative notation here!!

 $[5]^2 = [25] = [1]$. then o([5]) = 2 and $< [5] >= \{[1], [5]\} \simeq \mathbb{Z}/2\mathbb{Z}$.